The SAPDP Program Set for Sigma 5 Assembly

D. E. Erickson

Communications Systems Research Section

This article describes a set of programs that have been written to enable the
Sigma 5 computer to assemble programs for the PDP-11 minicomputer. It consists
of two parts: a system procedure deck, which allows SIGMA METASYMBOL to
assemble a source language similar to PDP’s own PAL-11; and a secondary loader,
which reformats the Sigma 5 load module into PDP-11 absolute binary format and
punches it onto paper tape. The syntactic differences between this assembler and
PAL-11 are described, as well as the process of generating a PDP-11 program using

this program set on the Sigma 5.

I. Introduction

The Sigma assembler for the PDP (SAPDP) is a set of
programs for the Sigma 5 computer which can be used
to build programs for the PDP-11 computer. It consists
of two parts: a system procedure deck, which allows
METASYMBOL to assemble a source language similar to
PAL-11; and a secondary loader, which reformats the
Sigma 5 load module into PDP-11 absolute loader format
and punches it onto paper tape. Figure 1 of the article by
C. C. Klimasauskas® is a good description of the use of
SAPDP if references to X930 within that figure are re-
placed by references to SAPDP.

The procedure deck defines the valid operators to the
SIGMA 5 METASYMBOL assembler, and determines

1See “The X930 Program Set for Sigma 5 Assembly” by C. C.
Klimasauskas in this issue,

JPL TECHNICAL REPORT 32-1526, VOL. Vi

what code will be generated. for the valid source state-
ments. METASYMBOL procedures are similar to macro
definitions. The code produced from the source program
under control of the procedures is formatted by META-
SYMBOL into a Sigma relocatable object module (ROM)
containing relocation information, external references and
definitions, and generated code.

A number of ROMs may then be linked together, and
the external references and definitions resolved by the
Sigma loader. Normally the loader gives the user the
option of saving relocation information, creating a task-
control block (TCB), and satisfying unresolved external
references from the system library. These are Sigma-
oriented functions and should be disallowed during load-
ing for PDP-11 programs by specifying the options (ABS),
(NOTCB), and (NOSYSLIB) on the load control card. The
Sigma loader also has the capability of relocating the

91

program to any boundary which is a multiple of 200 hex.
It will automatically relocate to the background lower
limit unless the BIAS option is specified on the load card.
(BIAS, 0) will cause the first ROM to be not relocated. The
Sigma loader structures its output into a file called a load
module (LMN), which consists of the core image program
and several records of control information. The Sigma 5
has write protection, so the core image is in several pieces,
one for each protection type.

The secondary loader reads a Sigma load module and
writes the 00 protection-type core image data in the format
which is loaded by the PDP-11 absolute loader. So that
the program need not start on a multiple of 200 hex, the
secondary loader skips all data until the first non-zero
16-bit word. Thus the first valid word in the PDP-11 pro-
gram must be non-zero. At present, output from the
secondary loader is to paper tape, but when a direct link
is established between the Sigma 5 and PDP-11 com-
puters, the output could be sent across this link.

Il. The Source Language

The source language is defined by the system procedure
deck SYSTEM PDP-11. Although similar to PAL-11, it has
many significant differences made necessary by the re-
quired format for METASYMBOL statements.

A. Syntax

This discussion is intended to enable the programmer
familiar with the PDP-11 Paper Tape Programming Hand-
book to write source code for SAPDP. A programmer
who is also familiar with the XDS Sigma 5/7 Symbol/
Metasymbol Reference Manual, hereinafter referred to as
the METASYMBOL manual, may skip down to the sec-
tion titled modes of addressing.

1. Characters

Alphabetic: A throughZ,$,@,#,:, and __ (break char-
acter, underscore).

Numeric: 0 through 9.

Special: blank,(,), +,—,&,|,” (single quote),*, and
comma.

2. Symbols. Symbols may consist of 1-63 alphanumeric
characters, at least one of which is alphabetic. The special
symbols $ and $$ stand for the values of the location
counters and their use is described later. As in the PAL-11
language, blanks may not be embedded in a symbol, but,
unlike PAL-11, all of the characters in a symbol are sig-
nificant, not just the first six.

92

3. Constants. The types of constants of interest to the
PDP-11 programmer are as follows:

Decimal integer: a string of numeric digits (not followed
by a decimal point)

Octal constant: a string of octal digits surrounded by
quotes and preceded by the letter O. Example: 0’1777’

Character string constant: A string of non-quote charac-
ters surrounded by quotes and optionally preceded by
the letter C. To represent a quote in a character string,
one may use two consecutive single quotes. Example:
C’AB”C’ is the string AB’C

4. Expressions. Expressions are composed of terms and
operators. The terms may be symbols or constants, and
may be forward references to non-redefinable symbols.
Many operators are available. They are described in the
METASYMBOL manual. Four of them correspond to the
PAL-11 operators: +,—,& (logical and), and | (logical
inclusive or).

Parentheses may be used to force the order of opera-
tions. In the absence of parentheses, the order is set by the
binding strength of the operators described in the META-
SYMBOL manual. There is no default term or operator.

5. Statements. As in PAL-11, a SAPDP statement is com-
posed of up to four fields which are identified by their
order of appearance. These fields are: LABEL OPERA-
TOR OPERAND COMMENT.

Termination of the fields is somewhat different, how-
ever, due in part to the fact that input is from cards rather
than paper tape. A statement begins in column 1 of a card
and ends on column 72. Any of the fields may be termi-
nated by the end of statement (EOS), and all but the
COMMENTS field may be terminated by a blank. A semi-
colon in any but the COMMENTS field will continue the
statement beginning with the first non-blank character of
the next card, which must be blank in column 1. The
semicolon may not be between quotes.

The LABEL field begins in the first column of the
statement and terminates with the first blank or end of
statement. If the first character of the statement is blank,
the LABEL is not present. If present, the LABEL may be
any symbol except $ or $$.

The OPERATOR begins with the first non-blank char-
acter following the LABEL field, and terminates with a

JPL TECHNICAL REPORT 32-1526, VOL. Vil

blank or EOS. The OPERATOR is either an assembler
directive or an instruction mneumonic.

The OPERAND begins with the first non-blank after
the OPERATOR and terminates with a blank or EOS.
The form of the OPERAND depends on the OPERATOR.

The COMMENTS field extends from the end of the
OPERAND to the end of the statement.

B. Modes of Addressing

One of the major differences in the source languages is
the method of representing the modes of addressing.
SIGMA 5 METASYMBOL has special symbol conventions
which necessitate the alteration of address mode syntax.
First, METASYMBOL provides no special way of de-
claring a given symbol to represent a register, so SAPDP
assumes that any expression which has a value from 0 to 7
represents a register. Such an expression will be referred
to as a register expression (RE), any other expression as
an expression (E). SAPDP reserves four special symbols
to aid in describing addressing modes: @, @D, @I, and #.
Table 1 describes the syntax.

The last entry in the table illustrates the method of
specifying deferred addressing; merely prefix the address
with the character = instead of @ as one would for the
PAL-11 assembler. Example of deferred auto increment:

*(@LRE).

C. Instruction Mnemonics

All of the instruction mneumonics described in Appen-
dix B of the PDP-11 Paper Tape Software Programming
Handbook are available unaltered, with the exception of
COM which has been changed to COMW due to a con-
flict with a METASYMBOL directive.

D. Assembler Directives

The syntax of the directives has been changed slightly.
The .EOT directive is no longer necessary and has been
dropped. The period preceding the names of the other
directives has been eliminated. Thus .END is now written
END.

E. Assignment of Symbol Values

To define and assign a value to a symbol, it must appear
in the LABEL field of a statement. If the OPERATOR is
an instruction mneumonic or a BYTE, WORD, RES, or

JPL TECHNICAL REPORT 32-1526, VOL. VI

EVEN directive, the LABEL is not redefinable and is
assigned the current value of the location counter $. If it
is an EQU or SET directive, the LABEL is assigned the
value of the OPERAND expression. This is similar to
direct assignment in PAL-11. A SET symbol may be re-
defined, whereas an EQU symbol may not. Forward
references may not be made to redefinable symbols.
Examples:

A SET B
B EQU 5 B is not redefinable
A SET A+1 Aisredefinable

a forward reference to B

F. The Location Counters

SAPDP has two location counters: the load location
counter $$, and the execution location counter $. These
cannot be assigned values directly as the location counter
can in the PAL-11 assembler. This is due to the restriction
that $ and $$ cannot be used as labels. Space for data can
be reserved, however, by using the reserve directive

LABEL RES,1 EXPRESSION
to replace

LABEL =.
.=.+EXPRESSION

where EXPRESSION evaluates to a positive value indicat-
ing the number of bytes to be reserved. LABEL is op-
tional. The symbol $ in SAPDP can be used in expressions
wherever . was used in PAL-11. Example:

BR $+5

The initialization of the location counter $ for a program
which is to be loaded for execution at octal location SSSS
is done by the directive

ORG,1 0O’SSSS’

as the first card in the deck. Unless one is familiar with
METASYMBOL and this particular application of it,
attempts to alter the location counters others than by the
methods described here could easily lead one astray,

G. The Program Deck

The SAPDP program deck must begin with two direc-
tives establishing the environment:

ORG,1 O’SSSSS’
SYSTEM PDP11

93

where SSSSS is the octal address of the first byte of the
program. The first word of the program must be non-zero.

The END directive should be the last card in the pro-
gram deck. If the OPERAND field of the END directive
is a non-zero address, it will become the automatic start-
ing address of the program, and the PDP-11 absolute
loader will transfer control to that address. If there is no
OPERAND or it is zero, a transfer address of 1 is gener-

ated, causing the PDP-11 loader to halt after loading the

program,

H. Extended Featdres

All of the features of SIGMA METASYMBOL de-
scribed in the METASYMBOL manual are available to
the SAPDP user. These include the ability to define
PROCs and perform conditional assembly, to create a
compressed source deck, to generate a concordance of
symbols used, and many other features. One may also use
the features of the Sigma 5 loader, such as linking of exter-
nal references and definitions, and creation and use of user
libraries of preassembled subroutines.

In addition, two PROCs define directives which gen-
erate floating point format data. The directives are FSC
(Floating Short Constant), and FL.C (Floating Long Con-
stant), These are used with types of constants not de-
scribed above as operands:

Floating Short Constant FS’CCCCC’
Floating Long Constant FL"CCCCCC’

where CCCCC represents a number of the following form:
.D D DD

where D is a decimal string, optionally preceded by a sign
and optionally followed by a decimal exponent composed
of the letter E followed by an optional sign and one or two
decimal digits.

The FSC directive takes the short operands and the
FLC the long operands. Examples:

FSC FS’1.5 FS7TSE—5" Generates 3 words for 1.5

and 3 for 0.00078
FLC FL’36.245E24’

If one wishes to create a new control section, either
within a METASYMBOL assembly by means of a CSECT

94

directive, or in a separate assembly, he must follow cer-
tain conventions. First, he must make sure that the loca-
tion counters are byte addressing, and, second, he must be
sure to initialize them correctly. He accomplishes both of
these objectives with an ORG directive:

ORG,1 0O’SSSSs’

If the CSECT is the first CSECT that the loader will see,
SSSSS should be the load address for the paper tape. If
not, SSSSS should be 0 and this CSECT will be automati-
cally loaded following the preceding one. External refer-
ences and definitions may be used and will be resolved by
the Sigma 5 loader, so commonly used subroutines may be
preassembled and saved on cards or rad.

lll. The Secondary Loader

The secondary loader reformats Sigma 5 load modules
into PDP-11 absolute loader format. Input to the sec-
ondary loader is through the M:EI DCB and output is
through the M:PO DCB. The input load module is typi-
cally on a RAD file, and the output is to paper tape. The
M:EI and M:PO DCBS must be assigned to the appro-
priate files or devices before execution of the secondary
loader. The PDP-11 absolute loader expects control infor-
mation at the beginnings and ends of the records it reads,
and the secondary loader supplies this.

In addition, the addressing schemes of the Sigma 5 and
the PDP-11 are somewhat different. Within a PDP-11
sixteen-bit word, the even-numbered byte contains the
least significant part of the word and the next higher odd
byte contains the most significant part of the word. In the
Sigma 5 this is reversed. Thus the secondary loader must
reverse each pair of bytes. Unfortunately, this means that
it also erroneously reverses bytes which were generated
to be loaded at a particular byte address; therefore, the
BYTE directive has been written to reverse the bytes
when generating them to be consistent with word genera-
tion. A METASYMBOL DATA,1 directive should not be
used for byte items for this reason.

The length of a core image segment in a Sigma load
module is a multiple of a Sigma double word (64 bits) so
the last byte of a program created through SAPDP will
load on a PDP-11 address which is a multiple of 8 less 1.
This means that several bytes of zeros may follow the
actual program.

JPL TECHNICAL REPORT 32-1526, VOL. Vii

IV. Control Cards

The following is the deck setup for assembling in a program under SAPDP and punching a tape for the PDP-11.

[JOB PDP,PDP
IMETASYM SLLO,GO
ORG,1 0SSSS’

SYSTEM PDP11
REMAINDER OF PROGRAM DECK

END STARTING ADDRESS

ILOAD (BIAS,0),(MAP),(NOSYSLIB),(NOTCB),(ABS),(LMN,PDPL),(GO)

IASSIGN M:PO,(DEVICE,PPA01),(OUT)
IASSIGN M:EL(FILE,PDPL)

IRUN (LMN,SLOAD)

IFIN

V. Progress

SAPDP has been successfully used to assemble on the
Sigma 5 computer and create an executable object tape of
a PDP-11 debug-type program which can, under teletype
request, display on the teletype or change the contents of
any memory cell. While this small program did not exer-
cise METASYMBOL to any great extent, it has shown

JPL TECHNICAL REPORT 32-1526, VOL. Vi

that the convenience features of Sigma MACRO process-
ing and high-speed input/output have been made avail-
able for PDP-11 programming. Future planned use of
SAPDP includes the programming of the software portion
of the u-2 Fast Acquisition Ranging System on a soon-to-
be-delivered PDP-11.

95

96

Table 1. Address mode syntax

Address
mode Type of addressing PAL-11 SAPDP

number

OR Register R RE

2R Auto increment {ER)+ {@],RE) or (RE,@)

4R Auto decrement —(ER) (@D,RE) or {@ ,RE)

6R Index E(ER) {E,RE)

27 Immediate #E (# E)

67 Relative address E E

37 Absolute address @#E *(#.E)

JPL TECHNICAL REPORT 32-1526, VOL. VIl

